If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+101+116
We move all terms to the left:
0-(-16t^2+101+116)=0
We add all the numbers together, and all the variables
-(-16t^2+101+116)=0
We get rid of parentheses
16t^2-101-116=0
We add all the numbers together, and all the variables
16t^2-217=0
a = 16; b = 0; c = -217;
Δ = b2-4ac
Δ = 02-4·16·(-217)
Δ = 13888
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13888}=\sqrt{64*217}=\sqrt{64}*\sqrt{217}=8\sqrt{217}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{217}}{2*16}=\frac{0-8\sqrt{217}}{32} =-\frac{8\sqrt{217}}{32} =-\frac{\sqrt{217}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{217}}{2*16}=\frac{0+8\sqrt{217}}{32} =\frac{8\sqrt{217}}{32} =\frac{\sqrt{217}}{4} $
| 0.7x-3.2=17 | | x2-2x=21 | | 2^x-1=104 | | -7x-6=18 | | 2^x+1=80 | | 34-3×(x+7)=6+4x | | 11y-5y=24 | | x+34=40 | | 0=18x^2-18x-108 | | x-8=5x+3-2x | | 2x-1/14=9/18 | | 12-7(x-9)=75-7x | | 12+-7(x+-9)=75+-7x | | 5c^2-50c+55=0 | | 12(x-3)=-13 | | 10-3y=18 | | 3=(-48/x)+x | | 2-7(6n+9)n=2 | | x3−15,500=125 | | 13x+3.6=7x-8.4 | | 54x^2=-21x+20 | | 54x^2=—21x+20 | | 54x2=—21x+20 | | x^2-17=24 | | 8y^2+5y+6=0 | | 13x+13=4x+283 | | 1=-9t^2 | | 3(x+4)=-5x+-36 | | 8=-w^2-6w | | x^2-1/3=5 | | -10x–5+2(-5+6x)=11 | | 7/6=x63 |